FAQs & their solutions for Module 1: Introduction & Basic Mathematical Preliminaries

Question1: An electron of energy 200 eV is passed through a circular hole of radius 10^{-4} cm. What is the uncertainty introduced in the angle of emergence?

Solution1:
$$p \approx \sqrt{2mE} = [2 \times 0.9 \times 10^{-27} \times 3.2 \times 10^{-10}]^{1/2} \approx 8 \times 10^{-19} \text{ g cm/sec}$$

Now

$$\Delta p \sim \frac{\hbar}{\Delta x} \simeq \frac{10^{-27} \text{ erg sec}}{2 \times 10^{-4} \text{ cm}} = 5 \times 10^{-24} \text{ g cm/sec.}$$

$$\theta \sim \frac{\Delta p_x}{p} \approx 6 \times 10^{-6} \text{ radians} \simeq 1 \text{ sec of arc}$$

<u>Question2</u>: In continuation of the previous problem, what would be the corresponding uncertainty for a 0.1 g lead ball thrown with a velocity 10^3 cm/see through a hole 1 cm in radius?

 10^3 cm/sec through a hole 1 cm in radius?

Solution2:

$$p \approx 10^2 \text{ cm g/sec}, \quad \Delta p \approx \frac{\hbar}{\Delta x} \approx 5 \times 10^{-28} \text{ g cm/sec}.$$

 $\theta \sim 5 \times 10^{-30} \text{ radians} \approx 10^{-34} \text{ sec of arc}$

Question3: Prove the following representation of the Dirac delta function:

$$\delta(x-a) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{\pm ik(x-a)} dk$$
(1)

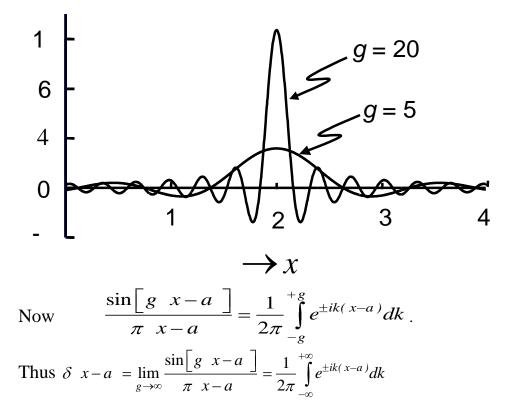
Solution3:

Since $\int_{-\infty}^{+\infty} \frac{\sin gx}{\pi x} dx = 1$ for all values of g > 0.

Thus,
$$\int_{-\infty}^{+\infty} \frac{\sin\left[g \ x-a\right]}{\pi \ x-a} dx = 1$$

The function $\frac{\sin\left[g \ x-a\right]}{\pi \ x-a}$ is plotted below for g = 5 and g = 20. As the value of g increases, it becomes more and more sharply peaked at x=a=2.. Thus the function $\frac{\sin\left[g \ x-a\right]}{\pi \ x-a}$ has all the properties of the delta function and hence

$$\delta x - a = \lim_{g \to \infty} \frac{\sin\left[g \ x - a\right]}{\pi \ x - a}$$
$$\frac{\sin\left[g \ x - 2\right]}{\pi \ x - 2}$$



Question4: Using Eq.(1), show that if we define

$$F k = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f x e^{\pm ikx} dx$$
(2)

then

$$f x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F k e^{\mp ikx} dk$$
(3)

The function F(k) is the Fourier transform of the function f(x).

Solution4: Since
$$f(x) = \int_{-\infty}^{+\infty} \delta(x - x') f(x') dx'$$
 we may write

 $f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{\pm ik(x-x')} f(x') dx' dk$ which is known as the Fourier Integral theorem.

Thus if we define

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$

Then

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(k) e^{+ikx} dk$$

The function F(k) is the fourier transform of the function f(x).

<u>Question5:</u> We define $G_{\sigma} x \equiv \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x-a^2}{2\sigma^2}\right); \sigma > 0$ (4)

Show that $\delta x - a = \lim_{\sigma \to 0} G_{\sigma} x$ which is the Gaussian representation of the Diracdelta functions.

Solution5: We have the integral:

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} \quad \Rightarrow \quad \int_{-\infty}^{+\infty} e^{-\alpha x^2 + \beta x} dx = \sqrt{\frac{\pi}{\alpha}} \exp\left[\frac{\beta^2}{4\alpha}\right]; \quad \text{Re } \alpha > 0$$

Now $G_{\sigma} x \equiv \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{x-a^2}{2\sigma^2}\right]$; $\sigma > 0$ If we use the above integral we

readily obtain:

 $\int_{-\infty}^{+\infty} G_{\sigma} \quad x \, dx = 1. \text{ If we plot } G_{\sigma} \quad x \text{ as a function of } x \text{ for different values of } \sigma \text{ (see diagram below) we will find that in the limit of } \sigma \to 0 \text{, the function } G_{\sigma} \quad x \text{ has all the properties of the Dirac delta function and we have } \delta x - a = \lim_{\sigma \to 0} G_{\sigma} \quad x \text{ .}$



Question6: Consider a Gaussian pulse given by $f t = A e^{-t^2/2\tau^2} e^{-i\omega_0 t}$. Calculate its frequency spectrum and show that $\tau \Delta \omega \approx 1$.

Solution6: $f t = Ae^{-t^2/2\tau^2}e^{-i\omega_0 t}$ Now $F \omega = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f t e^{i\omega t} dt$. Thus

$$F \quad \omega = \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-t^2/2\tau^2} e^{i \omega - \omega_0 t} dt$$

If we use the equation
$$\int_{-\infty}^{+\infty} e^{-\alpha x^2 + \beta x} dx = \sqrt{\frac{\pi}{\alpha}} \exp\left[\frac{\beta^2}{4\alpha}\right]; \text{ Re } \alpha > 0$$

we would readily get

$$F \omega = A\sigma \exp\left[-\frac{\omega - \omega_0^2 \tau^2}{2}\right].$$

The duration of the pulse is $\sim \tau$ and the frequency spread $\Delta \omega$ is $\sim \frac{1}{\tau}$.

Question7: Show that $\delta x - a = H' x - a$ where H x - a is the unit step function at x = a. **Solution7:** $\delta x - a = \lim_{\sigma \to 0} R_{\sigma} x$; where

$$R_{\sigma} \quad x = \frac{1}{2\sigma} \quad \text{for} \quad -\sigma < x - a < \sigma$$

= 0 for $|x - a| > \sigma$

Consider the ramp function $F_{\sigma} x = \frac{1}{2\sigma} x - a + \sigma$ for $-\sigma < x - a < \sigma$ = 0 for $|x - a| > \sigma$

It can easily be seen that $R_{\sigma} x = \frac{d F_{\sigma} x}{dx}$. In the limit of $\sigma \to 0$, the function $F_{\sigma} x$ becomes the unit step function (see Figure below) --- hence $\delta x - a = H' x - a$.

